
CarBuds Final Report 

 Bilkent University 

Senior Design Project 
CarBuds 

FINAL REPORT 
 

Ahmet Emre Nas 21402357 

Doğukan Altay 21400627 

Ali Osman Çetin 21302483 

Aras Heper 21302248 

 

 

Supervisor: ​Uğur Doğrusöz 

Jury Members: ​Ercüment Çicek, H. Altay Güvenir 

Innovation Expert: ​Doğukan Şengül 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 



CarBuds Final Report 

1.Introduction 4 

2.Architecture 5 
2.1. Overview 5 
2.2. Subsystem Decomposition 5 
2.3. Hardware-Software Mapping 6 
2.4 Design Decisions 7 

1.1. User Interface Design Decisions. 7 
1.2. Algorithm Design Decisions 8 

2.5. Client / Frontend Architecture 8 
2.5.1. Architectural Pattern 8 
2.5.2. Distribution & Deployment 8 

2.6. Service / API Architecture 9 
2.7. Database Architecture 9 
2.8. Transaction Architecture 9 

3.Contextual Impacts 9 
3.1. Short Term Impacts 9 
3.2. Long Term Vision 9 

4.Contemporary Issues 10 
4.1.Social Issues 10 

5. Contemporary Tools Used 10 
Git 10 
Docker 10 
Nginx 10 
RabbitMQ 11 
Google Cloud 11 
Firebase 11 
Google Maps API 11 
PostgreSQL 11 

6.Used Libraries, Solutions and Resources 12 

7.User Manual 14 
7.1 Login Page 14 
7.2 Signup Page 16 
7.3 Role Selection Page 17 
7.4 Initial Profile Setup Page 18 
7.5 Matchmaking Page 19 
7.6 Profile Page 20 
7.6 Matches Page 21 
7.7 Edit Profile Page 22 
7.8 Message Page 22 

2 



CarBuds Final Report 

7.9 Match Info Page 23 

8.Document References 24 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3 



CarBuds Final Report 

1.Introduction 

Hitchhiking has always been a common sight, “CarBuds” is a solution provided on mobile              

machines running by Android to transform this phenomenon into a more convenient form, while              

allowing its users to form new relationships.  

“Carbuds” allows its users to register as, either or both, driver and passenger. The solution               

provides tools to help users visually recognize trips that will be done by other users satisfying the                 

users criteria.  

Users can also further investigate the available choices to make their trip with, can              

communicate with the candidates via the messaging service.  

This document investigates the solution “Carbuds” by roughly laying the architectural details,            

suggests the socioeconomic impacts if the project succeeds to reach a critical popularity mass, and               

discusses possible contemporary issues related to project.  

The reader can also find a User Manual at the section “7”, and all used libraries together with                  

their licensing at the section ”6”. 

 

 

 

 

 

 

 

 

 

 

 

 

 

4 



CarBuds Final Report 

 

2.Architecture 

2.1. Overview  

This section briefly presents the overall architectural and design decision taken for the             
implementation of the solution “CarBuds”. More elaborately, it tries to present the subsystem             
decomposition via a composition diagram(2.2) followed by hardware-software mapping(2.3).         
Design decisions are being discussed at the following sub-section(2.4), which is also followed             
by specific architectural decisions related to the subsystems(2.5-2.8).  

2.2. Subsystem Decomposition 

 

 

 

 

 

 

 

 

 

 

 

Image: System composition represented 

 by the members decomposed to sub-parts. 

5 



CarBuds Final Report 

2.3. Hardware-Software Mapping 

 

Image: Hardware-Software mapping represented by the composition diagram. 

 

Carbuds application system consists of one client and two servers. All the communications             

between deployment server and client handled with HTTP protocol using RESTful API. For the              

in-app messaging service each client connects to the AMQP message broker server in order to               

communicate with each other using AMQP protocol. Carbuds backend consists of several docker             

containers for each different component needed. The reason behind is that with the docker containers               

each component can be scaled up easily on server clusters in case of a scalability problem and gives                  

us the opportunity to maintain the version compatibility between each component in the deployment              

server. Android client uses JSON for sending and receiving data from/to the RESTful API server. In                

the backend server, ngnix used as a load balancer and reverse proxy each http request to the WSGI                  

server in the RESTful API container. Therefore, in case of huge traffic load balancer will ensure that                 

the server will be reachable. Since client send all the data to the API, it has no direct connection to the                     

database which increases the security of the system and the maintainability of the overall system. All                

database queries handled with the API. For route calculations, system uses Google Maps API. 

API container also handles the preparation of the data for the matchmaking container. When a               

user creates a trip, API generates the route polyline for the trip and writes to the database and search                   

for any possible match in the database. At the and, if API finds a possible match saves the possible                   

6 



CarBuds Final Report 

match to the database. In order to find a match there are several constraints, each user’s trip start                  

points should be in a circle with 1 Km radius, their routes’ intersection should be more than 1 Km,                   

their gender and music preferences should comply and their desired trip start times’ difference should               

not exceed 1 hour in favor of the driver. 

Client demands possible candidates from the API. After the user’s decision, appropriate data             

will be sent to the API again. Matchmaking container works as a STIL. Constantly checks possible                

matches and if finds that both users liked each other it marks them as match and writes to the database                    

server, creates a chatroom in RabbitMQ message broker and sends a notification to the each user                

using Firebase Cloud Messaging API through Firebase server. Android client opens the listeners for              

the match’s chatroom and enables in-app messaging for the users. Also provides appropriate             

information about the trip. 

 

 

2.4 Design Decisions 

During design phase developers needed to agree on both user interface and algorithmic             

designs. This section contains information about design decisions and the impact of these decisions on               

the project development. 

1.1. User Interface Design Decisions. 

First discussion about user interface that we needed to solve was about how user should match                

with each other. Some of the team members suggested every possible candidate should be visible               

and can talk with each other’s. But this would create a problem where some users can annoy other                  

users. Therefore, we decided to develop our application in a way that both of the users who is                  

going to talk needs to accept each other. Because of this we did not list every possible candidates                  

to each user but designed a cardview which caused a matchmaking system. When user want to                

find possible driver or hitchhiker a picture of each users shown to user and if both of the user                   

accept each other they can start talking with each other. 

After this we discussed how can we accomplish our user-friendly interface goal. We know if               

there are many buttons on a page it decreases user-friendliness. Because of this we decided to                

design tabbed view on main page but in order to keep it simple we only added three tab to main                    

page of the application. One of the tab for profile of users and settings, one tab is for the setting a                     

new trip and matchmaking and the last one is for chatting with matched users. 

7 



CarBuds Final Report 

Another discussion we encountered what should we display to users when they matched with              

each other. We decided to show them the preferences of other user. And the common route they                 

will share when they decide to travel together. By this way hitchhiker can look the intersection of                 

routes and decide to travel with his/her most suitable match. 

1.2. Algorithm Design Decisions 

The main and the most important algorithm for Carbuds is matchmaking. We can find the               

users’ trip’s routes however drawing these routes on Google Maps does not help us to find users                 

who has a same or similar trip. In order to achieve this, we took polyline of routes from google                   

maps. Polyline is compressed data of the all the points in a route. A detailed explanation of this                  

algorithm can be found at:  

https://developers.google.com/maps/documentation/utilities/polylinealgorithm​[21].  

By reversing this algorithm we could take every point on someone’s route. After this we checked                

every users’ routes who started a trip close to each other with each other and created possible                 

matches. 

 

 

2.5. Client / Frontend Architecture 

2.5.1. Architectural Pattern 

“Carbuds” app follows the MVC architectural pattern, as the application logic is            

tightly bound to I/O and user interaction, such a model is enforced, unless MVP or MVVM is                 

used, which is not. Various I/O listeners listen to their respective sources, when triggered              

triggers the change in the data models, as such, changes either await the views or notify the                 

watcher views to be consumed by the views associated with the models.  

The implementation of the app is in Java using Android SDK. 

2.5.2. Distribution & Deployment  

To compile “Carbuds” successfully, the client machine must have android API           

version from 2.4 to 2.8.  

The software will be distributed using Google’s Play Store . 

Internet connection is required to deploy the app, and to run the features successfully.  

 

8 

https://developers.google.com/maps/documentation/utilities/polylinealgorithm


CarBuds Final Report 

2.6. Service / API Architecture 

The web server adheres to REST architecture, and as such the relevant states are              
being kept in either the data management tools, or on the client. 

2.7. Database Architecture 

Databases are implemented in PostgreSQL.  

2.8. Transaction Architecture 

● The messaging system between client machines and the server is provided by            

RabbitMQ provider through AMQP message queuing protocol to sustain the chat           

service. This connection is initiated by HTTP handshaking provided by Firebase. 

● The client machine connects to web server hosting the service layer via HTTP calls. 

● The web server hosting the service layer fetches data from or pushes data to database               

provider via PostgreSQL queries.  

 

3.Contextual Impacts  

3.1. Short Term Impacts  

“CarBuds” allows easier, pre-planned hitchhiking trips; “CarBuds” helps hitchhiking evolve          

from a contingent way of transportation to a convenient way of transportation, possibly reducing the               

resources needed for the same amount of work, economically cutting down the private expenditure,              

especially from the lower income people who can’t afford cars, as such, slightly reducing the skewed                

asset distribution in the economy,  also reducing the need for growth in the physical infrastructure.  

Environmentally “CarBuds” helps to support more population with the same resources. 

3.2. Long Term Vision 

This project helps to empower the common idea, that through sharing, instead of strict              

ownership of the resource, the society becomes more productive and more socially secure. This              

project is another small step to establish such a value.  

9 



CarBuds Final Report 

4.Contemporary Issues 

4.1.Social Issues 

It is very true that both classical hitchhiking and a technologically supported one such as               

“CarBuds” can be abused criminally by mal-intentioned individuals. However this commonality does            

not extend far; by supporting hitchhiking digitally, and by luckily creating an environment where              

software assisted hitchhiking is a norm; dependability and regulatability of each session of             

hitchhiking increases, uncontrolled or unaccounted hitchhiking ratio decreases. This solution,          

“CarBuds”, empowers both hitchhikers and drivers.  

There is an uncalculated risk invoked in the project, which is the initial assumption that               

drivers desire to have passengers for no personal benefit other than humanitarian gratification and              

companionship, doing so without having those passengers on their immediate peripherals.  

However, as every other innovative project should be, “CarBuds” is an unregulated            

experiment on the society, a step worth taking, especially since the only risk takers are the developers                 

themselves. 

5. Contemporary Tools Used 

● Git 

“Git is a free and open source distributed version control system designed to handle              

everything from small to very large projects with speed and efficiency” [https://git-scm.com].            

We used GitHub for merging everyone’s code during development. 

 

● Docker 

“Docker is a tool designed to make it easier to create, deploy, and run applications by                

using containers. Containers allow a developer to package up an application with all of the               

parts it needs, such as libraries and other dependencies, and ship it all out as one package”                 

[22]. We used it for deploying our Flask and Database server. 

● Nginx 

10 



CarBuds Final Report 

“NGINX is open source software for web serving, reverse proxying, caching, load            

balancing, media streaming, and more. It started out as a web server designed for maximum               

performance and stability. In addition to its HTTP server capabilities, NGINX can also             

function as a proxy server for email (IMAP, POP3, and SMTP) and a reverse proxy and load                 

balancer for HTTP, TCP, and UDP servers”[17]. Since we are developing a web server as a                

backend of carbuds app it is important to balance the network on the server. For this purpose                 

we used Nginx. 

● RabbitMQ 

“RabbitMQ is a messaging broker - an intermediary for messaging. It gives your             

applications a common platform to send and receive messages, and your messages a safe              

place to live until received”[18] . RabbitMQ is a message-broker on top of amqp. We used                

rabbitmq for messaging between users. 

● Google Cloud 

The backend of the carbuds deployed in the compute engine which cloud computing             

service of Google Cloud. By using compute engine we ensured backend of the carbuds will               

always run and can be accessed from anywhere. 

● Firebase 

Firebase is a product of google and developed for developing mobile and web             

application without server-side of programming which includes real-time database, data          

storage and authentication service. However, we used it only for push notifications. 

● Google Maps API 

Carbuds rely on accurate location information of users in order to match users with              

the best possible candidates. In order to achieve this we used Google Maps for route               

information of users’ trips. 

● PostgreSQL 

For database, we used PostgreSQL because of it’s functionality on geographical data            

which helped us to match users who are close to each other. 

 

11 



CarBuds Final Report 

6.Used Libraries, Solutions and Resources 

● “Fast Android Networking” [1] 
 
License: Apache 2.0, copyrighted on amitshekhariitbhu [2] 
 
Explanation: Gives tools to quickly post network requests and receive their responses. 
 
 

● “ImagePicker” [3] 
  
License: MIT[4] 
 
Explanation: Allows selection of images from the users file system. 
 
 

● “Apache Commons IO” [5] 
 
License: Apache 2.0, copyrighted on apache [6] 
 
Explanation: Supports tools to interpret data streams.  
 
 

● “Glide”, [7] 
 
License: Apache 2.0, copyrighted on ​bumptech​ [8] 
 
Explanation: A library for image fetching and displaying from the network. 
 
 

● “RabbitMQ”, [9] 
 
License: MPL 1. 1, copyrighted on Pivotal Software Inc.[10] 
  
Explanation: A messaging solution used in the software to implement the chat service. 
 
 

● “CardStackView” [11] 
 
License: Apache 2.0, copyrighted on yuyakaido [12] 
 
Explanation: An elaborate GUI library to display a list of elements. 
  
 

12 

https://github.com/bumptech/glide/blob/master/LICENSE


CarBuds Final Report 

● “RoundedImageView”[13] 
 
License: Apache 2.0, copyrighted on Vincent Mi [14] 
 
Explanation: Grants a GUI image viewing component that has soft edges. 
 
 

● “Nachos” [15] 
 
License: Apache 2.0, copyrighted on Hootsuite Media [16] 
 
Explanation: A library to display chip-like text fields. 
 
 
 

13 



CarBuds Final Report 

7.User Manual 

7.1 Login Page 

 
 

14 



CarBuds Final Report 

 
 

First page of the Carbuds is “Login Page”. When a fresh user opens the app, they will be                  
greeted with the login page. Also active users will be greeted with login page if they lost their sessions                   
or logged out. Fresh users can use “Sign up” button to create an account. In order to gain access to the                     
system, user need to provide its correct credentials. If credentials validated by the server their login                
will be successful, else they won’t get access. 
 

 
 
 
 
 
 
 

15 



CarBuds Final Report 

7.2 Signup Page 
 

 
Fresh users can create an account by using Signup page. Each user need to provide several                

credentientials about them. After signup, users will be redirected to the login page in order to access                 
the system. 

16 



CarBuds Final Report 

7.3 Role Selection Page 

 
In Carbuds, each user should select a role whether as hitchhiker or driver. If users did not                 

choose any role before, they will be greeted with the Role Selection page in order to choose a role.  

17 



CarBuds Final Report 

7.4 Initial Profile Setup Page 

 
In Carbuds, in order to set trips and get matches each user should setup their preferred role                 

profile. However, if a user does not have any prior profile for their preferred role, they will be greeted                   
with the Initial Profile Setup page which changes depending on their role. 
 
 

18 



CarBuds Final Report 

7.5 Matchmaking Page 

Matchmaking is one of the most important feature of the Carbuds. In Matchmaking page,              
users can like/dislike possible candidates depending on their current trips. Users can see the              
candidates’ profile pictures, name, their trip start time and possible intersection of both parties trips               
over Google Maps. Users either swipe right to like or click like button and either swipe left or click                   
dislike button in order to dislike the candidate. 
 
 

19 



CarBuds Final Report 

7.6 Profile Page 

 
User can see their active role’s profile information in Profile page. Also in this page, user can                 

edit his/her profile information by clicking edit button. Users can change/add a profile picture by               
clicking add image button. In Profile page, Carbuds provide settings menu as a navigation bar. It can                 
be activated by clicking gear button. In settings user can, logout, change role, cancel current trip and                 
set a new trip.  

20 



CarBuds Final Report 

7.6 Matches Page 

 
 

Users can see their active matches in this page. In Matches page, each match listed as                
message list. Users can access the corresponding match’s message page by clicking the elements in               
the list.  

21 



CarBuds Final Report 

7.7 Edit Profile Page 

 
Users can edit their current profile information in this page. Edit Profile page changes              

depending on their active role. 

7.8 Message Page 
Carbuds provides users a in-app messaging service. Each match represented as messages for             

each user.  

22 



CarBuds Final Report 

7.9 Match Info Page 

 
 

Users can access the match informations in Match Info page. Users can see the trip route of                 
the match and start time with the other user’s profile picture. 

 

 

 
 

23 



CarBuds Final Report 

8.Document References 

[1] Github, “Fast Android Networking”, December 2018 [Online]. Available: 
      ​https://github.com/amitshekhariitbhu/Fast-Android-Networking 
[2]Github, “Fast Android Networking”, December 2018 [Online]. Available: 
      https://github.com/amitshekhariitbhu/Fast-Android-Networking/blob/master/LICENSE 
[3] Github, “Android image picker”, December 2018 [Online]. Available: 
      https://github.com/esafirm/android-image-picker  
[4] Github, “ImagePicker”, December 2018 [Online]. Available: 
      https://github.com/hyperoslo/ImagePicker/blob/master/LICENSE.md 
[5] Github, “Apache”, December 2018 [Online]. Available: 
      https://github.com/apache/commons-io 
[6]Apachi, “License”, December 2018 [Online]. Available: 
      ​https://www.apache.org/licenses/LICENSE-2.0 
[7] Github, “Glide”, December 2018 [Online]. Available: 
      https://github.com/bumptech/glide 
[8] Github, “Glide License”, December 2018 [Online]. Available: 
      ​https://github.com/bumptech/glide/blob/master/LICENSE 
[9]Github, “Rabbitmq”, December 2018 [Online]. Available: 
      https://github.com/rabbitmq/rabbitmq-server 
[10] Github, “Rabbit mq License”, December 2018 [Online]. Available: 
      ​https://github.com/rabbitmq/rabbitmq-server/blob/master/LICENSE-MPL-RabbitMQ 
[11]Github, “Card Stack View”, December 2018 [Online]. Available: 
      ​https://github.com/yuyakaido/CardStackView 
[12] Github, “Card Stack View License”, December 2018 [Online]. Available: 
      ​https://github.com/yuyakaido/CardStackView/blob/master/LICENSE 
[13] Github, “Round Image View”, December 2018 [Online]. Available: 
      ​https://github.com/vinc3m1/RoundedImageView 
[14]Github, “Roudn Image View license”, December 2018 [Online]. Available: 
      ​https://github.com/vinc3m1/RoundedImageView/blob/master/LICENSE 
[15] Github, “Nachos”, December 2018 [Online]. Available: 
      ​https://github.com/hootsuite/nachos 
[16]Github, “Nachos Lisence”, December 2018 [Online]. Available: 
      ​https://github.com/hootsuite/nachos/blob/master/LICENSE  
[17] Nginx, “Nginx”, December 2018 [Online]. Available: 
      ​https://www.nginx.com/resources/glossary/nginx/ 
[18] Rabbitmq, “Rabbitmq Features”, December 2018 [Online]. Available: 
      ​https://www.rabbitmq.com/features.html 
[19]UML, “What is UML”, ​July 2005,  [Online]. Available: 
      ​http://www.uml.org/ 
[20]IEEE, “IEEE Citation Reference”, ​December 2018​ [Online]. Available: 
https://ieee-dataport.org/sites/default/files/analysis/27/IEEE%20Citation%20Guidelines.pdf 

24 

https://github.com/amitshekhariitbhu/Fast-Android-Networking
https://www.apache.org/licenses/LICENSE-2.0
https://github.com/bumptech/glide/blob/master/LICENSE
https://github.com/rabbitmq/rabbitmq-server/blob/master/LICENSE-MPL-RabbitMQ
https://github.com/yuyakaido/CardStackView
https://github.com/yuyakaido/CardStackView/blob/master/LICENSE
https://github.com/vinc3m1/RoundedImageView
https://github.com/vinc3m1/RoundedImageView/blob/master/LICENSE
https://github.com/hootsuite/nachos
https://github.com/hootsuite/nachos/blob/master/LICENSE
https://www.nginx.com/resources/glossary/nginx/
https://www.rabbitmq.com/features.html
http://www.uml.org/
https://ieee-dataport.org/sites/default/files/analysis/27/IEEE%20Citation%20Guidelines.pdf


CarBuds Final Report 

[21] Google, “Encoded Polyline Algorithm Format”, ​December 2018 ​[Online].Available: 
       ​https://developers.google.com/maps/documentation/utilities/polylinealgorithm 
[22] opensource.com, “What is Docker?”, ​December 2018 ​[Online].Available: 
       ​https://opensource.com/resources/what-docker 

25 

https://developers.google.com/maps/documentation/utilities/polylinealgorithm

